EFFECT OF VISCOELASTIC PROPERTIES OF A
LIQUID ON THE DYNAMICS OF SMALL OSCILLATIONS
OF A GAS BUBBLE

32.13

o
w

S. P. Levitskii and A. T. Listrov UDC 532,

.
.

A series of papers has been devoted to questions of gas bubble dynamics in viscoelastic liquids.
Of these papers we mention {1-4]. The radial oscillations of a gas bubble in an incompressible
viscoelastic liquid have been studied numerically in [1, 2] using Oldroyd's model [5]. Anexact solu-
tion was found in [3], and independently in {4], for the equation of small density oscillations of a
cavity in an Oldroyd medium when there is a periodic pressure change at infinity. The analysis

of bubble oscillations in a viscoelastic liquid is complicated by properties of limiting transitions

in the rheological equation of the medium, These properties are of particular interest for the
problem under investigation. These properties are discussed below, and characteristicsof the
small oscillations of a bubble in an Oldroyd medium are investigated on the basis of a numeri-

cal analysis of the exact solution obtained in [3].

The fundamental characteristics of the small oscillations of a bubble in a viscoelastic liquid, obtained
in [3], on being reduced to dimensionless form are
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where D is the amplitude of small density oscillations, relative to the acoustic pressure py a is the phase
shift between the acoustic pressure and the forced density oscillations; —s;and —§ arethe damping coefficients
of characteristic oscillations of density with a frequency u; p* na'k, A% Ak are the density, viscosity, relaxa-
tion time, retardation time, and surface tension of the liquid, respectively; w* is the acoustic pressure fre-

quency; p*, is the pressure at infinity; k is the polytropy exponent; and Rf is the initial radius of the bubble,
Dimensional quantities are denoted by an asterisk.

Equations (1) correspond to the case when the characteristic equation for small density oscillations in
a viscoelastic liquid has a positive discriminant @ [3]:
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This case is of most interést, since it corresponds to the underdamped regime of characteristic bubble oscil-
lations.

In order to investigate the effect of the parameters A; and A, on the nature of small density oscillations,
numerical calculations of Eqs, (1) were made on a model BESM-4 computer for 73=0.01; 0=0,001; k=1.4,
The results are given in Figs. 1-7.

Resonance curves for a bubble in a Maxwellian liquid (A, =0) are given in Fig. 1 (1-4 correspond to Ay =
0, 0.25, 0.5, 0.75). It can be seen that as A increases the resonance amplitude of the oscillations increases
sharply. For large values of relaxation time the graph of the function D=D(w) approaches a discontinuous
curve, characteristic of an ideal liquid {6]. This is explained by the fact that when A;— « Oldroyd's equation

Ty + MDDt /Dt=2nle;, + kDe;, D) (3)

assumesthe form Tix=const, Here 7ik and eji denote the excess stress tensor andthe deformation ratetensor,
respectively. Since the cavity was initially at rest, we can take T =0. This also means that the stresstensor
for the liquid becomes spherical.

It also follow from Fig. 1 that the resonance curves 2-4 for a Maxwellian liquid differ from curve 1 cor-
responding to a Newtonian liguid only in a narrow zone close to the resonance frequency w,. For w>w, and
w <« w, all the curves merge into one.

The functions D=D(w) are shown in Fig, 2 for an Oldroyd medium with A; =0.75, curves 1-4 correspond
to the values A,=0,75, 0.4, 0.2, 0. It is clear that a retardation of deformation rates (as opposed to stress re-
laxation) decreases the amplitude of bubble oscillations. For A, =2, the resonance curve assumes the same
form as for a Newtonian liquid. In this case Oldroyd's equation describes a normal viscous liquid. In fact,

for a Newtonian liquid we have
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Differentiating Eq. (4) with respect to time, multiplying by an arbitrary parameter A, and combining it with
the initial equation, we obtain Ed. (3) with A; =A, =A, This property of an Oldroyd medium was not noted in [2],
in particular, where a series of calculations was carried out for different values of A; and A, which were, how-
ever, equal to each other. In this case identical curves; corresponding to a Newtonian liguid, were obtained.

Thus, for all values of A ,, satisfyingthe inequality A; > A, > 0, the resonance curve for an Oldroyd liquid is con-
tained between two limiting curves corresponding to a Maxwellian and a Newtonian liquid.

The requirement of a positive~definite entropy output in an Oldroyd medium (see {7]) leads to the con-
dition A; >A, >0, The calculations given in [4] in graphical form for the cases Ay >A; >0 do not satisfy this con-
dition. At the same time Oldroyd's equation permits a limiting transition [3] for A;—~ 0 to the rheological equa-
tion of a viscoelastic liquid with a retardation of deformation rates, for which the parameter A, must be taken
positive. This fact has recently been proved strictly in [8] on the basis on a thermodynamic analysis. The
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equation with negative A,, known in the literature as Walters' equation of state [9], does not describe any real
liquid, for the reasons given in [8].

The phase shift angle « is given in Fig, 3 as a function of the acoustic pressure w for a bubble in a Max-
wellian medium, Curves 1-3 correspond to A;=0, 1, 10, It is clear that as Ay becomes larger the nature of
the phase shift approaches a step-function at the .frequency w=w, corresponding to an ideal liquid.

In connection with the fact that an Oldroyd medium passes to a Newtonian liquid for Ay =A,, it is con-
venient to treat the quantity A; and the difference A;—A,=A as parameters which characterize the medium.
The damping coefficient 6 is shown in Fig. 4 as a function of the parameter A; the curves 1-5 correspond to
A =1, 2, 3,5, 8. All the curves emerge from the one point, since the value A =0 corresponds to a Newtonian
liquid, It is clear that the damping coefficient is a practically linear function of the parameter A, while the
quantity — 6 decreasesas A increases. The curves terminate at the point A =A; on the abscissa, since taking
the calculations further would correspond to negative values of A,, For a fixed value of A an increase of A,
leads to an increase in the damping coefficient. However, calculations show that for small values of Ay and
A an Oldroyd medium is completely characterized by the single parameter A,

The damping coefficient —6 is shownin Fig. 5 as a function of A, for fixed values of A,, Curves 1-5 cor-
respond to A, =0, 0,5, 1, 2, 5, For Ay~ « the quantity 6— 0, which corresponds to an ideal liquid. Increasing
the retardation time A, for a constant value of A; leads to an increase in the damping coefficient. However,
the damping coefficient in a viscoelastic liquid is always less than in a Newtonian liquid. We also note that
as A, is increased the curve giving the damping coefficient as a function of the relaxation time takes on a more
gently sloping character.

The second damping coefficient — sy, specific for a relaxing medium, is given in Fig. 6a as a function of
Ay. Calculations show that the quantity s, depends only negligibly on the retardation time A,. As A increases
without limitthe damping coefficient —s; decreases monotonically to zero.

It is clear from Figs, 4-6 that the damping coefficients —6 and —s; are positivefor allvalues of A; and A,
In this connection we should mention aninaccuracy appearing in[4] where the character of small oscillations
of a cavity in a viscoelastic medium is analyzed. It is shown in [4] that under certain conditions the solution
of the equation for small oscillations of a cavity in an Oldroyd liquid can increase without limit. In the opin-
ion of Yang and Lawson this signifies the onset of cavitation in the small amplitude acoustic field, For this
to happen the quantities 6 or sy, representing the real parts of the roots of the characteristic equation (2), must
be positive., Inequalities are formulated in [4] which the parameters of the problem must satisfy in this case.
It can be shown that Eq. (2) has no roots with positive real parts. Actually, the well known Routh— Hurwitz
conditions [10], which are necessary and sufficient for all the roots of Eq. (2) to have negative real parts, can
be written in the form

b>0, ¢>0, ab>c.
The first two inequalities are satisfied in an obvious manner, while the last is equivalent to the relation
dnghiT (AT + Ay [3k -+ 20(3k — 1) + 4mehT!]) >0,

whichis alsoalways satisfied. Thus,thereare nophysically realizable conditions under whichthe criteriaforthe
onset of cavitation, formulated in [4], can be satisfied. The damping coefficient —§ and —S1 arealways positive,
which was pointed out in [3]. We note that the possibility of the unlimited growth of a bubble in a small ampli-
tude acoustic field was derived in {11], and there is a reference to this in [4]. In [11] this derivation depends
on the collision of certain parameters of the problem, and on an error in linearizing the equation for the bubble
radius.

The phase shift angle o is shown in Fig. 6b as a function of A; for a fixed value of the frequency w=2,
and the curves 1-4 correspond to A,=0, 1, 2, 5. It is clear that as the relaxation time X, increases, the phase
shift between the cavity oscillations and the pressure oscillations at infinity decreases monotonically for a
given frequency w. The curve @ =a(\y) is steepest in a Maxwellian liquid (curve 1), while for Ay >0 the curve
becomes more gently sloping. An increase in retardation time leads to an increase in the phase shift, How-
ever, for all values of A, the phase shift in an Oldroyd liquid is less than in a Newtonian liquid. We note that
this applies only to frequencies up to the resonance frequency (w<wy), For w>wp the opposite result holds
(see Fig. 3).

The characteristic frequency of the oscillations u and their amplitude D are given in Fig. 7a, b as func-
tions of the relaxation time A; up to the resonance frequency w=2, Curves 1-5 correspond to Ay=0,0,5,1, 2,5,
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It is clear that as A increases the characteristic frequency of the oscillations increases at first, and then de-
creases monotonically. Retardation has the effect of reducing the magnitude of y. We note that the character-
istic frequency of bubble oscillations in an Oldroyd liquid is always larger than in a Newtonian liguid, but less
than in a Maxwellian liquid.

The data of Fig. 7b allow us to illustrate some properties of the variation of oscillation amplitude up to
the resonance frequency as the parameters Ay and A, are varied. These properties could not be represented
in the scale chosen in Figs. 1 and 2. It is clear that as A, increases, the amplitude D first decreases, and only
then increases monotonically, approaching the amplitude of bubble oscillations in an ideal fluid at the frequency
w=2 when Ay becomes large. This can apparently be explained by the fact that for small values of A the in-
crease inthe characteristic oscillation frequency u (Fig. 7a) and, consequently, the displacement of the reso-
nance curve intothe region of large frequencies, occurs more rapidly than the increase in oscillation amplitude.
Increasing the retardation time in this region of variation of Ay leads to an increase in the amplitude.

Thus, the linear analysis given above shows that the oscillations of bubbles in viscoelastic fluids close
to the resonance frequencies should develop more strongly than in Newtonian liquids,

The authors are grateful to V., N. Nikolaevskii for useful advice and for discussing the results.
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