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A se r ies  of papers  has been devoted to questions of gas bubble d~mamics in v iscoelas t ic  liquids. 
Of these papers  we mention [1-4]. The radial  osci l lat ions of a gas bubble in an incompressible  
v iscoe las t ic  liquid have been studied numer ica l ly  in [1, 2] using Oldroyd 's  model [5]. Anexact  solu-  
tion was found in [3], and independently in [4], for the equation of small  density oscil lat ions of a 
cavity in an Oldroyd medium when there  is a periodic p r e s su re  change at infinity. The analysis 
of bubble oscil lat ions in a v iscoe las t ic  liquid is complicated by proper t ies  of limiting t ransi t ions  
in the theological  equation of the medium. These proper t ies  are of par t icu lar  interest  for the 
problem under investigation. These proper t ies  are discussed below, and charac te r i s t i c s  of the 
smal l  oscil lat ions of a bubble in an Oldroyd medium are investigated on the basis of a numer i -  
cal analysis of the exact solution obtained in [3]. 

The fundamental cha rac te r i s t i c s  of the small  oscil lat ions of a bubble in a v iscoelas t ic  liquid, obtained 
in [3], on being reduced to dimensionless  form are 
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where D is the amplitude of smal l  density osci l lat ions,  relative to the acoustic p re s su re  Po; ~ is the phase 
shift between the acoustic p r e s su re  and the forced density osc i l l a t ions ; - s~  and - 5  a re  the damping coefficients 
of cha rac te r i s t i c  oscil lat ions of density with a f requency t~; P*, V~, hi*, k2*, are the density, viscosi ty,  re laxa-  
tion t ime,  re tardat ion t ime, and surface tension of the liquid, respect ively;  a~* is the acoustic p re s su re  f r e -  
quency; p *  is the p res su re  at infinity; k is the polytropy exponent; and 1~ is the initial radius of the bubble. 
Dimensional quantities are denoted by an as ter isk .  

Equations (1) cor respond to the case when the cha rac te r i s t i c  equation for smal l  density oscil lat ions in 
a v iscoelas t ic  liquid has a positive discr iminant  Q [3]: 
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This case is of most  interest ,  since it cor responds  to the underdamped regime of charac te r i s t i c  bubble osc i l -  
lations.  

In o rde r  to investigate the effect of  the pa r ame te r s  ~.~ and k 2 on the nature of smal l  density oscil lations,  
numer ica l  calculat ions of Eqs.  (1) were made on a model BI~SM-4 computer  for 70 =0.01; a =0.001; k = l . 4 .  
The resul ts  are given in Figs.  1-7.  

Resonance curves  for a bubble in a Maxwellian liquid (k 2 =0) are given in Fig. 1 (1-4 cor respond  to ;~ = 
0, 0.25, 0.5, 0.75). It can be seen that as kl inc reases  the resonance amplitude of the osci l lat ions increases  
sharply.  For  large values of relaxat ion t ime the graph of the function D = D(co) approaches a discontinuous 
curve,  cha rac te r i s t i c  of  an ideal liquid [6]. This is explained by the fact that when )~I-- :r Oldroyd 's  equation 

"r~h § )~,D~l~/Dt=2~lo(e~l, ~- Z~De~i.Dt) (3) 

a s sumes the  fo rm y ik=cons t .  Here 7 ik  and eik denote the excess  s t r e s s  t enso r  and thedeformat ion  r a t e t ensor ,  
respect ive ly .  Since the cavity was initially at res t ,  we can take Vik=0.  This also means t h a t t h e s t r e s s t e n s o r  
for  the liquid becomes spher ical .  

It also follow f rom Fig. 1 that the resonance curves  2-4 for  a Maxwellian liquid differ f rom curve 1 c o r -  
responding to a Newtonian liquid only in a narrow zone close to the resonance  frequency co r.  For  w>>~r and 
0~<<co r all the curves  merge  into one. 

The functions D=D(co) are shown in Fig. 2 for  an Oldroyd medium with X I =0.75, curves  1-4 cor respond 
to the values ;~2=0.75, 0.4, 0.2, 0. It is c lea r  that a re tardat ion of deformation ra tes  (as opposed to s t r e ss  r e -  
laxation} decreases  the amplitude of bubble osci l la t ions.  For  h 2--h 1 the resonance curve assumes  the same 
form as for  a Newtonian liquid. In this  case Oldroyd 's  equation descr ibes  a normal  viscous liquid. In fact, 
for a Newtonian liquid we have 

~i~=2~10ei~. (4) 

Differentiating Eq. (4) with respec t  to t ime,  multiplying by an a rb i t r a ry  pa rame te r  X, and combining it with 
the initial equation, we obtain Eq. (3) with )~l =k2 =~. This proper ty  of an Oldroyd medium was not noted in [2], 
in par t icu lar ,  where a se r i e s  of calculations was ca r r i ed  out for  different values of h I and )~2 which were, how- 
ever ,  equal to each other.  In this case identical curves ,  corresponding to a Newtonian liquid, were obtained. 

Thus, fo r  all values of X 2, sat isfying the inequality X t > ~ 2 > 0, the resonance curve for  an Oldroyd liqu id is con- 
tained between two limiting curves  corresponding to a Maxwellian and a l'~ewtonian liquid. 

The requi rement  of a posi t ive-defini te  entropy output in an Oldroyd medium (see [7]) leads to the con-  
dition X 1 >k 2 >0. The calculat ions given in [4] in graphical  fo rm for the cases  ~2 >kl >0 do not sa t isfy  this con-  
dition. At the same t ime Oldroyd 's  equation permi t s  a limiting t rans i t ion  [3] for kC" 0 to the theological  equa- 
tion of a v iscoelas t ic  liquid with a re tarda t ion  of deformation ra tes ,  for which the p a r a m e t e r  X~ must be taken 
posit ive.  This fact  has recent ly  been proved s t r ic t ly  in [8] on the basis on a thermodynamic  analysis .  The 
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equation with negative k2, known in the l i tera ture  as Wal te r s '  equation of state [9], does not descr ibe any r e a l  
liquid, for  the reasons  given in [8]. 

The phase shift angle c~ is given in Fig. 3 as a function of the acoustic p re s su re  co for a bubble in a Max- 
wellian medium. Curves  1-3 cor respond  to X t --0, 1, 10. It is c lear  that as kl becomes l a rge r  the nature of 
the phase shift approaches a step-function at the frequency co=co r corresponding to an ideal liquid. 

In connection with the fact that an Oldroyd medium passes  to a Newtonian liquid for ;h =k2, it is con- 
venient to t rea t  the quantity ~t and the difference Xi-X2 =~ as pa r ame te r s  which charac te r ize  the medium. 
The damping coefficient 6 is shown in Fig. 4 as a function of the p a r a m e t e r  k; the curves  1-5 cor respond to 
~l =1, 2, 3, 5, 8. All the curves  emerge  f rom the one point, since the value ~=0 cor responds  to a Newtonian 
liquid. It is c lea r  that the damping coefficient is a prac t ica l ly  l inear  function of the pa r ame te r  X, while the 
q u a n t i t y - 6  dec rea se s  as X inc reases .  The curves  te rminate  at the point X =kl on the abscissa ,  since taking 
the calculations fur ther  would cor respond  to negative values of 2`2. For  a fixed value of 2̀  an increase  of ~t 
leads to an increase  in the damping coefficient.  However, calculations show that for smal l  values of ~.l and 
2̀  an Oldroyd medium is completely charac te r i zed  by the single pa r ame te r  2 .̀ 

The d a m p i n g c o e f f i c i e n t - 5  is shownin Fig. 5 as a function of 2̀ 2 for fixed values of k 2. Curves 1-5 c o r -  
respond to 2,2=0 , 0.5, 1, 2, 5. For  ~.l - '~o the quantity 6- -0 ,  which cor responds  to an ideal liquid. Increas ing 
the re tardat ion time ~2 for a constant value of X t leads to an increase  in the damping coefficient.  However, 
the damping coefficient in a v iscoe las t ic  liquid is always less than in a Newtonian liquid. We also note that 
as ~2 is increased  the curve giving the damping coefficient as a function of the relaxation t ime takes on a more 
gently sloping charac te r .  

The second damping coefficient - s l ,  specific for  a relaxing medium, is given in Fig. 6a as a function of 
2`t. Calculations show that the quantity s I depends only negligibly on the re tardat ion t ime ~2. As ~i increases  
without limit the damping coefficient - s~ decreases  monotonically to zero .  

It is c lear  f rom Figs.  4-6 that the damping coefficients - 6 and - sl a re  positive for  al lvalues of k~ and ~'2. 
In this connection we should mention an inaccuracy appearing in [4] where the charac te r  of smal l  oscil lat ions 
of a cavity in a v iscoelas t ic  medium is analyzed. It is shown in [4] that under cer ta in  conditions the solution 
of the equation for smal l  osci l la t ions of a cavity in an Oldroyd liquid can increase without limit. In the opin- 
ion of Yang and Lawson this  signifies the onset of cavitation in the smal l  amplitude acoustic field. For  this 
to happen the quantities 6 o r  sl, represent ing  the real  par ts  of the roots  of the charac te r i s t i c  equation (2), must 
be posit ive.  Inequalities are formulated in [4] which the pa rame te r s  of the problem must sat isfy in this case.  
It can be shown that Eq. (2) has no roots  with positive real  par t s .  Actually, the well known l~outh- Hurwitz 
conditions [10], which are n e c e s s a r y  and sufficient for all the roots of Eq. (2) to have negative rea l  parts ,  can 
be writ ten in the form 

b~>O, c ~ O ,  a b ~ c .  

The f irs t  two inequalities are satisfied in an obvious manner ,  while the last is equivalent to the relat ion 

4~0~ -~ {~-~ ~- ~ [3k -- 2a(3k -- ~) § 4~10~7~] } > 0, 

which is also always sat isf ied.  Thus, there  are  no physically real izable conditions under whichthe c r i t e r i a  for the 
onset of cavitation, formulated in [4], can be satisfied. The damping c o e f f i c i e n t - 6  a n d - s  1 a re  always positive, 
which was pointed out in [3]. We note that the possibi l i ty of the unlimited growth of a bubble in a smal l  ampli-  
tude acoustic field was derived in [11], and there  is a re fe rence  to this in [4]. In [11] this derivation depends 
on the collision of cer tain pa rame te r s  of the problem, and on an e r r o r  in l inearizing the equation for  the bubble 
radius.  

The phase shift angle a is shown in Fig. 6b as a function of~. 1 for  a fixed value of the frequency r 
and the curves  1-4 cor respond to ?~2 =0, 1, 2, 5. It is c lear  that as the relaxation time;~ ~ increases ,  the phase 
shift between the cavity oscil lat ions and the p re s su re  osci l lat ions at infinity decreases  monotonically for a 
given frequency co. The curve a =a(~. l) is s teepest  in a Maxwellian liquid (curve 1), while for ~2 >0 the curve 
becomes more  gently sloping. An increase  in re tardat ion t ime leads to an increase  in the phase shift. How- 
ever ,  for all values of 2̀ 2 the phase shift in an Oldroyd liquid is less than in a Newtonian liquid. We note that 
this applies only to frequencies  up to the resonance frequency (co<oar). For  co>cor the opposite result  holds 
(see Fig. 3). 

The charac te r i s t i c  frequency of the oscil lat ions p and the i r  amplitude D are given in Fig. 7a, b as func- 
tions of  the relaxation t ime ~t up to the resonance frequency co=2. Curves 1-5 cor respond  to ~.2=0, 0.5, 1, 2, 5. 
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It is c l ea r  that  as }'l i n c r e a s e s  the c h a r a c t e r i s t i c  f requency of the osc i l la t ions  i n c r e a s e s  at f i r s t ,  and then de-  
c r e a s e s  monotonical ly .  Retardat ion  has the effect  of reducing the magnitude of p.  We note that the c h a r a c t e r -  
is t ic  f requency of bubble osc i l la t ions  in an Oldroyd liquid is always l a r g e r  than in a Newtonian liquid, but l ess  
than in a Maxwellian liquid. 

The data of Fig. 7b allow us to i l lus t ra te  some p r o p e r t i e s  of the var ia t ion  of osc i l la t ion  ampli tude up to 
the r e sonance  f requency as the p a r a m e t e r s  X 1 and k 2 are va r ied .  These  p r o p e r t i e s  could not be r e p r e s e n t e d  
in the sca le  chosen in Figs.  1 and 2. It is c l e a r  that  as k 1 i n c r e a s e s ,  the ampli tude D f i r s t  d e c r e a s e s ,  and only 
then i n c r e a s e s  monotonical ly ,  approaching the ampli tude of bubble osc i l la t ions  in an ideal fluid at the f requency 
co=2 when kl becomes  l a rge .  This  can apparent ly  be explained by the fact that  for  sma l l  values  of Xi the in- 
c r ea se  in the  c h a r a c t e r i s t i c  osci l la t ion f requency  # (Fig. 7a) and, consequently,  the d isp lacement  of the r e s o -  
nance curve  in to the  region of l a rge  f requenc ies ,  occu r s  more  rapidly  than the inc rease  in osci l la t ion ampli tude.  
Inc reas ing  the r e t a rda t ion  t ime  in this  region of va r ia t ion  of X I leads to an inc rease  in the ampli tude.  

Thus,  the l inea r  analys is  given above shows that the osci l la t ions  of  bubbles in v i scoe las t i c  fluids close 
to the r e sonance  f requencies  should develop more  s t rongly  than in Newtonian liquids. 

The authors  are  gra tefu l  to V. N. Nikolaevski i  for  useful  advice and for  d iscuss ing  the resu l t s .  
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